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Abstract
The technique regarding the integration within a normally ordered product of operators, which
refers to the creation and annihilation operators of the harmonic oscillator coherent states, has
proved to be very fruitful for different operator identities and applications in quantum optics. In
this paper we propose a generalization of this technique by introducing a new operatorial
approach—the diagonal ordering operation technique (DOOT)—regarding the calculations
connected with the normally ordered product of generalized creation and annihilation operators
that generate the generalized hypergeometric coherent states. We have pointed out a number of
properties of these coherent states, including the case of mixed (thermal) states. At the same
time, by particularizing the obtained results to the one-dimensional harmonic and
pseudoharmonic oscillators, we get the well-known results achieved through other methods in
the corresponding coherent states representation.
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1. Introduction

The concept of coherent state was introduced more than nine
decades ago (in 1926) by Schrödinger [1] for the quantum
harmonic oscillator (HO) as the specific quantum state that
has dynamical behavior that is most similar to that of the
classical harmonic oscillator. Throughout this period, the
applicability area of the one-dimensional harmonic oscillator
(HO-1D) coherent states (CSs), also called canonical CSs, has
been considerably expanded, including very different fields,
such as physics and mathematical physics, to signal theory
and quantum information. Apart from the harmonic oscillator,
different kinds of coherent states have also been built for the
anharmonic oscillators, either as the lowering operator
eigenstate (the so-called CSs of the Barut–Girardello (BG)
kind) or by applying the displacement operator on a ground
state (Klauder–Perelomov CSs) or CSs of the Gazeau–
Klauder kind, including the nonlinear CSs, squeezed states
and deformed CSs. There are many significant books and
review papers on the CSs and their applications [2–6].

On the one hand, an interesting category of CSs is the so-
called generalized hypergeometric coherent states (GH-CSs);

these states have an appellation from their normalization
function, which is given by a generalized hypergeometric
function. These kinds of states were firstly introduced by
Appl and Schiller [7] and applied to the thermal states of the
pseudoharmonic oscillator in one of our previous papers [8].

On the other hand, Hong-yi Fan and coauthors have
elaborated on the integration within an ordered product
(IWOP) technique for Bose operators, referring to the CSs of
the HO-1D. Using this technique a number of known as well
as new results were obtained; however, much simpler math-
ematical calculations were used (see [9–16] and the references
therein). This useful technique can be particularized by the so-
called double dot operation ː ː (in the acceptance of Blasiak
et al [17]), which consists of applying the normal ordered
IWOP rules without taking into account the commutation
relation between the annihilation and creation operators.
Simply, inside the double dot operation ː ː these two operators
can be commuted as two commutable operators, i.e. such as
numbers. The normally ordered technique is very useful in the
calculations, which imply the CSs of the BG kind, as we will
see later.
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The aim of the present paper is to recover the char-
acteristics of the GH-CSs by introducing a new approach of
ordering the operators which generates these states. We call
this operation the DOOT and denote it with a new symbol # #.
The name is justified by the fact that here we are dealing only
with operators (more precisely, with normal ordered products
of operators) that are diagonal in the basis of the Hamilto-
nian’s eigenvectors (Fock vectors). This technique differs
somewhat from the double dot operations technique, which
can be considered as the particular case of the IWOP tech-
nique, proposed and developed by Hong-yi Fan and coau-
thors. In this way we want to show that the DOOT technique
can be formulated and used not only for the CSs of the HO-
1D but can also be generalized and extended to the CSs of
other types of oscillators, which are the particular cases of
more general HG-CSs.

The paper is organized as follows: In section 2 we quote
briefly some of the basic elements of the DOOT in order to
use it for the generalization of this technique to other opera-
tors and finally to compare the results obtained with those
known from literature. In section 3 we present the definition
and some important properties of the generalized hypergeo-
metric BG coherent states, respectively, the generalized
creation and annihilation operators which generate these
coherent states. In section 4 we examine the statistical prop-
erties of mixed (thermal) states corresponding to a canonical
distributed system in the light of using the DOOT deduced in
the previous section. In section 5 we present two examples
that illustrate the usefulness of the results obtained in the
previous two sections by referring to the HO-1D and also to
the pseudoharmonic oscillator (PHO). Section 6 is devoted to
some concluding remarks, while in the appendix we have
inserted some mathematical relationships on the generalized
hypergeometric functions and also on the Meijer's G functions
that we have used in previous sections.

2. Basics of the diagonal ordering operation
technique (DOOT)

Before introducing the basics of the DOOT, we examine
some properties of the GH-CSs, which will help to introduce
this new way of performing calculations. For this purpose,
following [7], we consider two hermitic conjugate operators

≡− −A Ap q( , ) and ≡+ +A A ,p q( , ) where =− +
+A A( ) , which acts

in the infinite dimensional Hilbert space of the Fock vectors
λ>n; , =n 0, 1, 2, ..., where p and q are positive integers,

and λ is a real parameter; its physical significance will be
evinced later. These densely defined operators act as the
generalized annihilation or, respectively, as creation operators
which generate the GH-CSs and are defined in the following
manner [7, 8]

∑ λ λ= ∣ + ∣−
=

∞

A f n n n( ) ; 1; , (2.1)
n

p q
0

,

∑ λ λ= ∣ + ∣+
=

∞

A f n n n( ) 1; ; (2.2)
n

p q
0

,

For brevity, we will omit writing the entire positive
numbers (p, q) and also the adjective word ‘generalized’
when we refer to the operators ≡− −A Ap q( , ) and ≡+ +A A ,p q( , )

but we will use this word if we refer to the hypergeometric
functions. Integers p and q appear in the definition of positive
functions f m( )p q, [7, 8]; the choice and meaning of these
functions will be explained below
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where Γ Γ= +a a n a( ) ( )/ ( )i n i i are Pochhammer’s symbols,
expressed through Euler gamma functions Γ a( )i and where
the sequence of coefficients … ≡a a a a, , , { }p i

p
1 2 1 and

… ≡ { }b b b b, , , q j
q

1 2
1
are real numbers. To simplify writing

the formulas, in the following we will use this abbreviated
notation for these coefficients.

We point out the following recurrence relationships,
which we will use in what follows

⎡⎣ ⎤⎦

ρ

ρ ρ

=

+ =n n f n

(0) 1;

( 1) ( ) ( ) (2.4)

p q

p q p q p q

,

, , ,

2

Using the above definitions of operators ≡− −A Ap q( , ) and
≡+ +A A ,p q( , ) as well as the orthogonality and completeness

relations of the Fock vectors,

∑

λ λ δ

λ λ

< ′ 〉 =

〉〈 =

′

=

∞
n n

n n

; ; ,

; ; 1, (2.5)

n n

n 0

it follows that the below relations are valid

λ λ∣ 〉 = − ∣ − 〉−A n f n n; ( 1) 1; , (2.6)p q,

λ λ∣ 〉 = ∣ + 〉+A n f n n; ( ) 1; , (2.7)p q,

i.e. the operator −A acts as a lowering operator, while its
conjugate operator A+ acts as a raising operator. Their product
operator in the normal ordered manner + −A A is a diagonal
operator in the Fock-vectors basis, and this property we will
exploit in the following
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These two operators do not commute; therefore, their
commutator is

⎜ ⎟⎛
⎝

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎞
⎠∑

λ λ

= − −

× 〉〈

− +
=

∞

[ ]A A f n f n

n n

, ( ) ( 1)

; ; . (2.9)
n

p q p q
0

,

2

,

2

In what follows, we deal only with general functions
depending on the normal ordered operator product + −A A , say

+ −F A A( ), and we will use a new operation, which we will
call the DOOT. We will denote this new introduced operation
by the symbols # #. Generally, this procedure differs and may
yield different results than those for the case of normal
ordering in the ordinary sense [17] or the IWOP techni-
que [9].

We assume that the DOOT with the symbols # # consists
of simply applying the normal ordering rules without taking
into account the above commutation relation. In other words,
inside the symbol # #, all the annihilation operators −A can be
moved to the right as if they commuted with the creation
operator +A in order to obtain the normal ordered operator
product + −A A or a function of this product + −F A A( ).

In a certain sense, from the operational point of view, the
DOOT calculus can be considered as a particular case of the
IWOP technique (namely, their normal ordered branch), with,
however, some specific particularities.

Namely, we introduce and adopt the following rules for
the DOOT calculus:

(I)* Inside the symbol # #, the order of the operators −A
and A+ can be permuted like commutable operators, but they
are permuted in a way that finally will result in an operator
function that depends only on the powers of the normally
ordered operator product + −A A , i.e.

= =

= =
− + + − + −

− + + − + −( ) ( ) ( )( ) ( )
A A A A A A

A A A A A A

# # # # ,

# # # # (2.10)n n n n n

(II)* A symbol # #inside of another symbol # # can be
deleted.

(III)* If the integration is convergent, a normally ordered
product of operators can be integrated or differentiated with
respect to c-numbers, according to the usual rules. In addition,
the c-numbers can be taken out from the symbol # #.

(IV)* The projector ∣ > < ∣0 0 of the normalized vacuum
state ∣ >0 in the frame of the DOOT has the following normal
ordered form

λ λ∣ 〉〈 ∣ =
+ −( ){ }F a b A A
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{ } ; ;
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j
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1 1

The last expression will be demonstrated below and at
the end of section 2 using the coherent states representation.

Generalizing, for a function which depends on the
normal operator product + −A A , say + −F A A( ), we have,

successively
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and consequently
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It may be observed that any function depending on the
normal ordered product of operators + −A A has a diagonal
matrix in the representation of the Fock-vectors basis λ∣ >n; ;
in what follows we will exploit fully this property in the
sense that we will deal only with the functions which depend
on the normal ordered product operators + −A A . The reason for
this is that the normalized functions of the GH-CSs are
expressed in terms of these kinds of functions, as we will see
later.

As it is usual, we choose the ground or vacuum state
λ∣ >0; as the state for which the lowering operator acts in the

following manner λ λ∣ > = ∣ >−A 0; 0 0; , while the repea-
table action of the raising operator on the vacuum state is

∏λ λ

ρ λ
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n n

0; ( ) ;

( ) ; (2.14)

n

m

n

p q

p q

0

1

,

,

By means of the conjugation property =− +
+A A( ) we

can derive the following relations

λ
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λ
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n
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n

,

,

The orthogonality relation of the Fock vectors helps us to
get a useful relation for evaluating the overlap of two GH-
BG-CSs

λ λ ρ=− +( )( )A A n0; 0; ( ) (2.16)n n
p q,

Using the above properties, we can write the complete-
ness relation of the Fock vectors using the DOOT

∑ λ λ〉〈
=

∞

n n; ;
n 0

3
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from which follows the expression of the projector of the
vacuum state (2.11).

The general proof regarding the inverse operators
of functions, which depend on the product of normally ordered
generalized operators + −A A , can be found in appendix B.

3. Generalized hypergeometric Barut–Girardello
(BG) coherent states

Now, let us define the coherent states (CSs) of the annihila-
tion operator −A in the BG manner

λ λ〉 = 〉−A z z z; ; (3.1)

where ϕ= ∣ ∣z z exp(i ) is the complex variable which labels
the CSs, defined on the entire complex plane ⩽ ∣ ∣ ⩽ ∞z0 ,

ϕ π⩽ ⩽0 2 .
These coherent states will be called the generalized

hypergeometric BG coherent states (GH-BG-CSs) for the
reason that follows: Their expansion in the Fock-vectors basis

λ∣ >n; is
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From the definition of GH-BG-CSs and the action of the
operator −A on the Fock vectors, we obtain that the expansion
functions are

∏
λ λ λ

ρ
= ≡

=

−c z c z
z

f m
c z

z

n
( ; ) ( ; )

( )
( ; )

( )
(3.3)n

n

m

n
p q

n

p q
0

0

1
,

0
,

where λ λ λ∣ ∣ ≡ ∣ < ∣ > ∣c z z( ; ) 0; ;0
2 2 is the normalization

function, which can be determined if we impose
that the GH-BG-CSs must be normalized to unity

λ λ< ∣ > =z z; ; 1.
For brevity’s sake, we prefer to use the above-introduced

notation
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The positive constants ρ n( )p q, are assumed to arise as the
moments of a probability distribution, i.e. [18, 19]

∫ρ ρ≡ ⩾n u u u( ) ( )d 0 (3.5)p q

R
n

p q,
0

,

and we can talk about GH-BG-CSs only if all moments exist
for all n: ρ =(0) 1p q, and ρ < + ∞n( )p q, .

Consequently, we obtain
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Finally, the expansion of the GH-BG-CSs in the Fock-
vectors basis becomes

∑
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and now it becomes clear why the functions fp, q(n) have
the above structure: the square of the normalization func-
tion is exactly the generalized hypergeometric function

… … ∣ ∣( )F a a b b z, , ; , , ;qp p q1 1
2

≡ ∣ ∣( ){ }F a b z{ } ; ;qp i
p

j
q

1
1

2 [20, 21]. The counterpart of the

GH-BG-CSs is
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For this reason the above coherent states are called the
GH-BG-CSs.

It goes without saying that the parameters a{ }i
p
1 and

{ }b j
q

1
of the generalized hypergeometric function

∣ ∣( ){ }F a b z{ } ; ;qp i
p

j
q

1
1

2 must be such that the denominator

factors in the terms of the series are never zero. On the other
hand, only these hypergeometric functions, which are con-
vergent, can play the role of the normalization function. The
convergence of the hypergeometric series can be examined
following their general convergence conditions (see, e.g.
[20, 21]). Generally, the radius of convergence R of an infi-
nite series is given by [18, 22]

ρ
=

→∞

R
n

1

lim ( )
, (3.9)

n
p q,

n

4
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and the coherent states exist only if the convergence radius is
nonzero.

Using equation (2.14) we can rewrite the GH-BG-CSs in
a manner that highlights the raising operator

∑
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or in a more compacted form, using the definition of the
generalized hypergeometric functions
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This relation shows that the generalized hypergeometric
functions generate these coherent states, which is another
reason to use the name generalized hypergeometric BG
coherent states (GH-BG-CSs) for these kind of coherent
states. It is useful to point out that for the particular cases,
p= 1 and ⩾q 1 Dehghani and Mojavery introduced a con-
tinuously parametrized family of nonlinear CSs [23] via a
generalized analogue of the displacement operator acting on
the vacuum state. The same approach was also used to con-
struct the generalized su(1,1) CSs for the PHO [24] of the
generalized su(2) CSs for the Landau levels [25] (see also the
more recent paper in [26]). It can be concluded that these
states can be regarded as the special classes of GH-CSs,
introduced by Appl and Schiller [7].

Their counterpart then is
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Using the DOOT, the projector onto a GH-BG-CS then
becomes
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When we put =z 0 in this relation, we recover the
projector on the vacuum state (2.11).

We will show that the above-defined states accomplish
all of the Klauder’s prescriptions regarding the coherent
states [2].

The overlap (scalar product) of two GH-BG-CSs can be
expressed using equations (3.7) and (3.8) and also the

normalization condition of the Fock vectors (2.5)
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The continuity in the complex variable z follows from the
overlap
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∣ ∣z( ) in order to demonstrate that the GH-BG-CSs fulfill the
resolution of the unity operator

∫ μ λ λ∣ 〉〈 ∣ =z z zd ( ) ; ; 1 (3.16)p q,

Replacing the expression of the integration measure, as
well as the GH-BG-CSs projector (3.13), we obtain

∫

∫ ϕ
π

=

π

∞

+

−

+ −

(
)

( )

( )
( )

( )
( )

( )
{ }

{ }

{ }

{ }

z
h z

F a b z

F a b zA

F a b z A

F a b A A

d
( )

{ } ; ;

d

2
# { } ; ;

{ } ; ; * /

{ } ; ;

# 1 (3.17)

p q

qp i
p

j
q

qp i
p

j
q

qp i
p

j
q

qp i
p

j
q

0

2 ,

1 1
2

0

2

1 1

1 1

1 1

First of all, we must perform the following function
change

≡
( ){ }

h z
h z

F a b z
˜ ( )

( )

{ } ; ;
(3.18)p q

p q

qp i
p

j
q,

,

1 1
2

The angular integration inside the symbol # # is easy to
perform if we use the definition of the hypergeometric func-
tions (equation (A.2)) and, of course, if we apply the IWOP
rules

∫

∑

ϕ
π

ρ ρ
=

′

π
+

−

′ =

∞

( )
( )

{ }

{ }

F a b zA

F a b z A

n n

d

2
# { } ; ;

{ } ; ; * #

1

( )

1
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qp i
p

j
q

p

q i
p

j
q

n n p q p q

0

2

1 1

1 1

, 0 , ,
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⎡⎣ ⎤⎦

∫

∑

ϕ
π

ρ

×

=

π
+

′
−

′

=

∞

+ − ( )

( )

( )

( )A A z z

n
A A z

# #
d

2
( ) ( *)

1

( )
# # (3.19)

n n n n

n p q

n n

0

2

0 ,

2
2

where we took into account that the angular integral from the
right-hand side is δ∣ ∣ ′z n

nn
2 so that we have to solve only the

radial integral

⎡⎣ ⎤⎦
∫

∑
ρ

×

=

=

∞

+ −

∞

+ −( )
( ) ( )

{ }

( )
n

A A

z h z z

F a b A A

1

( )
# #

d ˜ ( )

# { } ; ; # (3.20)

n p q

n

p q
n

qp i
p

j
q

0 ,

2

0

2
,

2

1 1

To obtain the hypergeometric function on the right-hand
side of the relation above, it is obvious that the following
equality must be fulfilled

∫ ρ=
∞

( ) ( )z h z z nd ˜ ( ) ( ) (3.21)p q
n

p q
0

2
,

2
,

The above integral is actually the Stieltjes moment pro-
blem [18]. After the exponent change, i.e. = −n s 1, the
solution of this integral equation can be expressed through
Meijer’s G-functions [20, 21]

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟
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Γ

Γ
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×
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=

+
+

( )

{ }
{ }

h z
a

b
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˜ ( )
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0, 1 ; /
(3.22)

p q
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p
i

j

q
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p q
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i
p

j
q

,
1

1

, 1
1,0 2 1

1

Using the relationship between the hypergeometric
functions and the Meijer’s G-functions [20, 21] (see
equation (A.3)), the integration measure becomes
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+

+
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{ }
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z G z
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2
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2
d

1 ; /
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(3.23)
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p
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The weight function of the integration measure must be a
nonoscillatory positive defined function, and it must be

unique. The sufficient condition for unicity is given by the
Carleman condition [18, 22]: if the solution of the Stieltjes
moment problem exists, then

⎧⎨⎩

∑
ρ

=

= +∞
< +∞ −

=

∞

S
n

1

( )

,
,

the solution is unique
non unique solutions exist

(3.24)

def

n p q1 ,
n

For finding the value of S, as well as the convergence
radius R, it is convenient to use, e.g. the logarithmic or
d’Alembert convergence test.

The expectation value of an operator A in the GH-BG-
CSs representation is

∑

λ λ

ρ ρ
λ λ

〈 〉 ≡ 〈 〉

=

×
′

〈 ′ 〉

λ

′ =

∞ ′

( ){ }

A A

A

z z

F a b z

z z

n n
n n

; ;

1

{ } ; ;

( *)

( ) ( )
; ; (3.25)

z

qp i
p

j
q

n n

n n

p q p q

;

1 1
2

, 0 , ,

In particular, if =A N ,s where =s 1, 2, ..., and N is
the particle number operator, i. e. λ λ∣ 〉 = ∣ 〉N n n n; ; , the
expectation value can be calculated as follows

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

〈 〉 =

×

λ

( )

( )( )

{ }

{ }

N
F a b z

z
z

F a b z

1

{ } ; ;

d

d
{ } ; ; (3.26)

s
z

qp i
p

j
q

s

qp i
p

j
q

;

1 1
2

2
2 1 1

2

In order to compare the statistics of different GH-BG-
CSs we need to compute the Mandel parameter, defined as
follows [27]

=
〈 〉 − 〈 〉

〈 〉
−λ

λ λ

λ

( )N N

N
Q 1 (3.27)z

z z

z
;

2
; ;

2

;

which shows how the relative difference between the var-

iance Δ = 〈 〉 − 〈 〉λ λ( )N N Nz z
2

; ;
2
and the expectation value

〈 〉 λN z; , both calculated in the representation of GH-BG-CSs.
After some simple algebraic calculations it is not difficult to

calculate 〈 〉 λN z; and 〈 〉 λN z
2

; and to prove that the Mandel para-

meter can be expressed as follows (for brevity, we used∣ ∣ ≡z x2 )

⎜ ⎟
⎡
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⎢⎢⎢⎢

⎛
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⎞
⎠

=λ

( )
( )

{ }
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x
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x
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d

d
{ } ; ;

d

d
{ } ; ;

z
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p

j
q
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p

j
q

;
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1 1

⎤

⎦

⎥⎥⎥−
( )

( )
{ }

{ }
x

F a b x
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d

d
{ } ; ;

{ } ; ;
(3.28)
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In order to verify the behavior of the GH-BG-CSs, i.e.
to see if they are sub-Poissonian (for which, <λQ 0 ),z;

Poissonian (with =λQ 0)z; or super-Poissonian (with
>λQ 0 ),z; the behavior of the Mandel parameter λQz; can be

examined with respect to the variable = ∣ ∣x z .2 Thus, the
statistical properties of the GH-BG-CSs are dependent on
the analytical properties of the mathematical operations
involving hypergeometric functions ( )F a b x{ } ; { } ;qp

p q
1 1 and

their derivatives. Generally, because the hypergeometric
functions are present, the Mandel parameter must be eval-
uated numerically for different variable values in order to
establish that λ∣ ∣Q z ; will be <0, =0 or > 0. The Mandel
parameter can be evaluated analytically in only a few par-
ticular cases.

At the end of this chapter, we will point out a useful
relation. According to equations (3.28) and (2.8), the expec-
tation value of the normally ordered operator = + −A A A is
then

⎡⎣ ⎤⎦

∑

∑

λ λ

ρ ρ
λ λ

ρ

〈 ∣ ∣ 〉 ≡ 〈 〉 =

=
∣ ∣

×
′

〈 ′ ∣ ∣ 〉

=

× − =

λ+ − + −

′ =

∞ ′
+ −

=

∞

( )

( )
( )

{ }

{ }

z A A z A A

F a b z

z z

n n
n A A n

F a b z

z

n
f n z

; ;

1

{ } ; ;

( *)

( ) ( )
; ;

1

{ } ; ;

( )
( 1) (3.29)

z

qp i
p

j
q

n n

n n

p q p q

qp i
p

j
q

n

n

p q
p q

;

1 1
2

, 0 , ,

1 1
2

0

2

,
,

2
2

To obtain this result we used the recurrence relation (2.4)
for coefficients ρ n( )p q, by eliminating the term with −n 1 and
changing the summation index ′ = −n n 1.

This expectation value can be obtained in an easier way
by writing the conjugate relation of the definition of GH-BG-
CSs (3.15)

λ λ〈 = 〈+z A z z; * ; (3.30)

and by calculating the inner product of vectors λ〈 ∣ +z A; and
λ∣ 〉−A z; .

As we have pointed out at the beginning of this paper, the
DOOT is very fruitful in the calculations, which imply CSs of
the BG kind. Due to the definition of the BG-CSs (3.1) and
also of their counterpart (3.30), the calculations are reduced to
the substitutions →−A z and also →+

⁎A z so that we have

λ λ〈 ∣ ∣ 〉 =+ −z A A z z; # # ; (3.31)2

Consequently, for a function of the normal ordered
operators + −A A , it follows that

λ λ〈 ∣ ∣ 〉 =+ − ( )( )z F A A z F z; # # ; (3.32)2

This is one of the main results of the DOOT procedure
for the generalized operators +A and −A : in the GH-BG-CSs

representation the matrix element λ λ〈 ∣ ∣ 〉+ −( )z F A A z; # # ; of
any operator valued function which depends only on the
normally ordered product of operators + −A A can be replaced
with a function of the same algebraic structure obtained by
replacing + −A A with ∣ ∣z ,2 i.e. ∣ ∣( )F z 2 .

So, we can verify the correctness of vacuum state pro-
jector expression (2.11) by using the GH-BG-CSs repre-
sentation. By multiplying equation (2.11) on the left/right
with λ〈 ∣z; , respectively λ∣ 〉z; , we obtain just the expression
(3.6) for the normalization function λ∣ ∣c z( ; )0

2

λ λ λ

λ

〉 = 〈

〉 =

+ −( )

( )

{ }

{ }

z z
F a b A A

z
F a b z

0; ; ; #
1

{ } ; ;

# ;
1

{ } ; ;
(3.33)
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p

j
q

qp i
p

j
q

2

1 1

1 1
2

4. Statistical properties

Now, let us consider a quantum system of oscillators with a
linear energy spectrum ω= ℏ +λ λE n E ,n, 0, which is in the
thermodynamic equilibrium with the environment at tem-
perature β= −T k( ) ,B

1 i.e. it obeys a canonical distribution.
The corresponding normalized density operator is then
[27]

⎜ ⎟⎛
⎝

⎞
⎠

∑

∑

ρ
β

λ λ

λ λ

= ∣ 〉〈 ∣

=
+ +

∣ 〉〈 ∣

β ω

=

∞
− ℏ +

=

∞

λ( )
Z

e n n

n

n

n
n n

1

( )
; ;

1

¯ 1

¯

¯ 1
; ; (4.1)

n

n E

n

n
0

0

0,

where = −β ωℏ −( )n e¯ 1
1
is the thermal expectation value of

the number operator (the Bose–Einstein distribution
function for oscillators with angular frequency ω) and also
with the partition function β ρ= = +β− λZ e n( ) Tr ( ¯ 1)E0, .

Using equations (2.15) and (2.11) and the DOOT rules,
the following expression yields

⎜ ⎟⎛
⎝

⎞
⎠∑

ρ
β

ρ

=

×
+

β−

+ −

=

∞
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e
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n

n

n
A A
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{ } ; ;

1

( )

¯

¯ 1
# (4.2)

E
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n p q

n

1 1
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0,

which leads to the expression

⎜ ⎟⎛
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⎠
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{ } ; ;
# (4.3)

E qp i
p

j
q

qp i
p

j
q

1 1

1 1

0,

7

Phys. Scr. 90 (2015) 035101 D Popov and M Popov



By normalizing to unity the density operator ρ, we obtain
the partition function βZ ( )

⎟

⎟

⎞
⎠

⎞
⎠⎟

⎞
⎠

⎞
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∫

∫

∫
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{ }

{ }
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¯
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/

{ } ; ; (4.4)
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2

1 1
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The last equality is obtained using the property
(3.32). By inserting the expression of the integration
measure and also by inserting the connection between the
generalized hypergeometric function and the Meijer’s G-
function (A.2), after the angular integration, we obtain the
integral
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This integral can be solved using the integral from two
Meijer’s G-functions (A.6) and their properties [20, 28],
bringing us to

⎛
⎝⎜

⎞
⎠⎟β β
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+

= +
β β− −λ λ

( )e

Z
G

n

n

e

Z
n1

( )
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E E

1,1
1,1

0, 0,

from which we obtain the partition function βZ ( )

β = +β− λ ( )Z e n( ) ¯ 1 (4.7)E0,

Finally, the normalized density operator in a normal
ordered form reads

⎜ ⎟⎛
⎝
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⎠
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The Q-distribution function, defined as the diagonal
elements of the normalized density operator in the CSs
representation [27, 30], particularly for the GH-BG-CSs,
is

⎜ ⎟⎛
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where we have also used the property (3.32).
It is not difficult to prove that the Q-distribution function

is normalized to unity

∫ μ =( )z Q zd ( ) 1 (4.10)p q,
2

The diagonal expansion of the normalized
canonical density operator in terms of the GH-BG-CSs pro-
jectors is

∫ρ μ λ λ= ∣ 〉〈 ∣( )z P z z zd ( ) ; ; (4.11)p q p q, ,
2

In order to determine the quasi-distribution function
∣ ∣P z( )p q,

2 we must compare two expressions for the density
operator ρ, i.e. equations (4.10) and (4.13), and we must
have
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Substituting equations (3.23) and (3.13), the right-hand
side becomes

=
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After performing the angular integration (the result is
δ∣ ∣ ′z )n

nn
2 we get the expression
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We proceed in a manner similar to those used for
deducing the integration measure μ zd ( )p q, (3.23), i.e. we
perform the suitable function change
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From the definition of the hypergeometric function (A.2)
and comparing it with the left-hand side of equation (4.12),
we see that the result of the integration must be
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In order to get to the Stieltjes moment problemwe perform
the exponent change, i.e. = −n s 1, and we get the integral

∫ ∞ −( ) ( )( )z P z zd p̃ q
s

0

2
,

2 2 1

⎜ ⎟⎛
⎝

⎞
⎠

∏
∏

Γ
Γ

Γ
=

+

− +

− +
=

=

( )
( )n n

n

s
b s

a s

1

¯

1

¯ 1

¯

( )
1

1
(4.17)s

j

q
j

i

p
i

1

1

This integral is fulfilled if the checked function ∣ ∣P z˜ ( )p q,
2

is [20]

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

=

× + −

−
+

+

( )

{ }
{ }

P z

n
G

n

n
z

a

b

˜

1

¯

¯ 1

¯

/; 1

0, 1 ; /
(4.18)

p q

p q
q

i
p

j
q

,
2

, 1
1,0 2 1

1

so that finally the quasi-distribution function ∣ ∣P z( )p q,
2 is

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

=

×
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−

−

−

+
+

+
+

( )

{ }

{ }

{ }

{ }

P z
n

G
n

n
z

a

b

G z
a

b

1

¯

¯ 1

¯

/; 1

0, 1 ; /

/; 1

0, 1 ; /

(4.19)

p q

p q
q

i
p

j
q

p q
q

i
p

j
q

,
2

, 1
1,0 2 1

1

, 1
1,0 2 1

1

The diagonal expansion of the normalized canonical den-
sity operator in terms of the GH-BG-CSs projectors is useful in
order to calculate the thermal expectation values (thermal
averages) of the operators A# #, which characterize the quantum
system. The thermal expectation values are defined by

∫
ρ

μ λ λ

=

= ∣( )
A A

Az P z z z

# # Tr (# #)

d ( ) ; # # ; (4.20)p q p q, ,
2

If =A I (unity operator), we obtain that the function
∣ ∣P z( )p q,

2 is normalized to unity

∫ μ =( )z P zd ( ) 1 (4.21)p q p q, ,
2

On the other hand, if = + −A A A#( ) #,s we have, succes-
sively

⎜⎛⎝
⎞

⎠
⎟
⎟⎟

∫

∫

∫∏
∏

μ

λ λ

μ

Γ

Γ

=

=

=

×

× +

×
−

−

+ −
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=

=

∞

+
+

(

( )

( )( )

( )( )

)
( )

{ }

{ }

( )

( )

{ }

A A z P z

z A A z

z P z z

n

a

b
z z

F a b z

G
n

n
z

a

b

d ( )

; ;

d ( )

1

¯

( )
d

{ } ; ;

¯ 1

¯

/; 1

0, 1 ; /
(4.22)

s
p q p q

s

p q p q
s

i

p
i

j

q
j

s

qp i
p

j
q

p q
q

i
p

j
q

, ,
2

, ,
2 2

1

1
0

2 2

1
1

2

, 1
1,0 2

1

1

Using the definition of the hypergeometric functions
(A.2) and also the integral formula (A.6), we obtain

∫

∏
∏

∑
Γ

Γ ρ
=

×

+ −
=

=
=

∞

∞ + + −( )( )
( )

( )A A
n

a

b n

z z

1

¯

( ) 1

( )

d

s i

p
i

j

q
j

n
p q

n s

1

1
0

,

0

2 2 ( 1) 1
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∞
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n

n

n
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n

n
n

¯ 1
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1

¯ 1

¯

¯ 1
( ) ( 1)

( )

( )

¯

¯ 1
!

(4.23)

p q
q

i
p

j
q

s

p q
n

n

i

p
i n j

q
j

n

i

p
i n j

q
j

n

n

, 1
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1

,
0

1 1
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The final result is then

⎜ ⎟

⎟

⎛
⎝

⎞
⎠

⎞
⎠

ρ=
+ +

+ +

+
+

+ − + +

+ ( { }

{ }

( )A A
n

n

n
s

F s a b s

a s b
n

n

1

¯ 1

¯

¯ 1
( )

1, { } , ;

{ } , ;
¯

¯ 1
(4.24)

s
s

p q p q

p q i
p

j
q

i
p

j
q

, 1

1 1

1 1

Let us verify this result in two cases: firstly, if we take
=s 0, we implicitly verify the normalization condition of the

quasi-distribution function ∣ ∣P z( )p q,
2

⎜ ⎟⎛
⎝

⎞
⎠ρ=

+ +

=
+ −

+

n
F

n

n

n
n

1
1

¯ 1
(0) 1; ;

¯

¯ 1
1

¯ 1

1

1
1

¯ 1

(4.25)

1,0 01

Secondly, for =s 1 we obtain

⎟⎞⎠

∏
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=
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× + +

×
+
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(
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a
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¯
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(4.26)

j

q
j
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p
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p qp q

i
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j
q

i
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j
q

1 1

1 1
1

1 1 1

1

where Γ Γ= + =b b b b( ) ( 1)/ ( ) ,j j j j1 and so on.
In the definition of the hypergeometric function the ratios

will appear as

∏
∏

∏

∏
∏

Γ
Γ

Γ
Γ+

=
+ +

+ +

=
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=

= =

=

=
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, (4.27)
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Which is similar for the coefficients b .j In addition,
Γ= + = +n n(2) (2 ) ( 1)!;n so, we obtain

⎜ ⎟⎛
⎝

⎞
⎠∑

∏
∏

=
+ + +
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×
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=

∞
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=

( )

A A
n

n

n

n

n
n

b n

a n

1
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¯
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( 1)
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(4.28)

n

n

j

q
j

i

p
i
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1

1

This result can be obtained in another way, i.e. if we
calculate the thermal expectation in the Fock vectors repre-
sentation successively using equations and (2.3), (2.5), (2.8),
(4.1)

⎜ ⎟
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⎠
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⎠
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∏
∏
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∞
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∞
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=

∞
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=
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¯
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(4.29)

n
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n

n

n
j

q
j

i

p
i

0

0

0

1

1

If we again eliminate the term with =n 0, which has no
effect, and by changing the summation index ′ = −n n 1, we
get the result above.

5. Some illustrative examples

In order to illustrate the applicability of the DOOT for the
generalized hypergeometric operators −A and +A , we apply it
to two cases: the HO-1D and the PHO. In this manner we
recover, in another way, some previously obtained results
(see, e.g. [7, 8, 11, 13, 22–27, 29]). For each result we will
indicate the corresponding above equation which generates
this result.

5.1. The one-dimensional harmonic oscillator (HO-1D)

If we choose =p 0, =q 0, =a 0,i =b 0,j we obtain, suc-

cessively, = +f n n( ) 1 ,0,0 ρ =n n( ) !,0,0 =−A a,

=+
+A a , λ = 0, λ∣ = 〉 ≡ ∣ 〉n n; 0 , λ∣ = 〉 ≡ ∣ 〉z z; 0 ,

ω ω ω= ℏ + = ℏ + ℏE n E nn, 0 0, 0
1

2
and

∣ ∣ = ∣ ∣F z z(; ; ) exp( )00
2 2 .

➢ The annihilation and creation operators (2.1) and (2.2)

∑

∑

= + ∣ + ∣

= + ∣ + ∣

=

∞

+

=

∞

a n n n

a n n n

1 1 ,

1 1 (5.1)

n

n

0

0

For the HO-1D the DOOT coincides with the IWOP
technique [9].
• Expectation value of the normally ordered product in the
Fock-vector state (2.8)

〈 〉 = 〈 〉 =+ +n a a n n a a n n# # (5.2)

• Expectation value in the Fock-vector state for a function
of normal ordered operators product +a a (2.13)

〈 ∣ ∣ 〉 =+( )n F a a n F n# # ( ) (5.3)
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• The projector of the vacuum state (2.11)

λ λ∣ 〉〈 ∣ = =
+

− +

( )F a a
e0; 0 ; #

1

; ;
# # # (5.4)a a

00

• Definition of the HO-1D CSs [2, 4], (3.1)

〉 = 〉a z z z (5.5)

• The expansion of the BG-CSs in the Fock-vectors basis
[2, 4], (3.7)

∑〉 = 〉−

=

∞

z e
z

n
n

!
(5.6)z

n

n1
2

0

2

• The BG-CSs written in an operatorial manner (for the
HO-CSs this is equivalent to the Klauder–Perelomov
CSs) [4], (3.12)

λ〉 = 〉− +
z e e; 0 (5.7)z z a1

2
2

• The projector onto a BG-CS [12], (3.13)

∣ 〉〈 ∣ =

× =

− − −

− − − −

+ +

+( )
z z e e e

e e

#

* # # * # (5.8)

z a a z a

z a z a z a( )

2

where we have used the canonical commutation relation
=+a a[ , ] 1 and also the disentangled Baker–Campbell–

Hausdorff formula (see, e. g. [30, 31])

=
= =

+ −e e e e A B A
A B B

, if[[ , ], ]
[[ , ], ] 0, (5.9)

A B A B A B1
2

[ , ]

• The overlap of two BG-CSs (3.14) lead to

〈 ∣ ′〉 =
′

′

= ′− + + ′
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z z
F z z

F z F z

e

( ; ; * )

; ; ; ;

* . (5.10)z z z z

00

00
2

00
2

1
2

2 2

• The integration measure (3.23) becomes

⎛
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π
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π
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π
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2
d (5.11)z z

0,0
2

00
2

0,1
1,0 2

2 22 2

• The expectation value of an operator A in the BG-CSs
representation (3.25) is

∑

〈 〉 ≡ 〈 〉

=
′
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′ =

∞ ′

A A

A

z z

e
z z

n n
n n

( *)

! !
(5.12)

z

z

n n

n n

, 0

2

• The Mandel parameter (3.28) can be expressed as
follows, with = ∣ ∣x z 2 [30]

⎜ ⎟
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⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥

= −

= − =

Q x
x

F x

x
F x

x
F x

F x

x
x

e

x
e

x
e

e

d

d
(; ; )

d

d
(; ; )

d

d
(; ; )

(; ; )

d

d
d

d

d

d 0. (5.13)

z

x

x

x

x

2

00

00

00

00

2

which means that the CSs of the HO-1D have a
Poissonian behavior.

• For a function of normal ordered operators +a a,
according to (3.32), we have

〈 ∣ ∣ 〉 =+ ( )( )z F a a z F z# # (5.14)2

• The normalized density operator in a normal ordered
form (4.8) reads [27]

⎜ ⎟⎛
⎝

⎞
⎠

ρ =
+

+

=
+

+

+

− +
+

( )n

F
n

n
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n
e

1

¯ 1
#
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¯

¯ 1

; ;
#

1

¯ 1
# #. (5.15)n

a a

00

00

1
¯ 1

• The Q-distribution function in the representation of BG-
CSs (4.9) for HO-1D is [27]

ρ≡ 〈 ∣ ∣ 〉 =
+

− + ∣( )Q z z z
n

e
1

¯ 1
(5.16)n

z
0,0

2 1
¯ 1

2

• The P quasi-distribution function (4.19) is then [27]

⎛
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⎛
⎝⎜

⎞
⎠⎟
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+
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( )P z
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G
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n
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n
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/; /
0, /; /

1

¯
. (5.17)n z

0,0
2

0,1
1,0 2

0,1
1,0 2

1
¯

2

• Thermal expectation value (4.26) of normally ordered
operator = =+ +A a a a a# # is

⎜ ⎟⎛
⎝

⎞
⎠〈 〉 =

+ + +

=
+ +

+ =

+

( )

a a
n

n

n
F

n

n

n

n

n
n n

1

¯ 1

¯

¯ 1
2; ;

¯

¯ 1
1

¯ 1

¯

¯ 1
¯ 1 ¯. (5.18)

01

2

This result can also be found by using equation (4.29),
i.e. by calculating the thermal expectation value in the Fock-
vectors basis.
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5.2. The pseudoharmonic oscillator (PHO)

If we choose p= 0, =q 1, =a 0,i = =b k b2 , 0,j1

=j q2, 3, ..., , we obtain, successively [32]
= + +f n n k n( ) ( 1)(2 ) ,0,1 =− −A K , =+ +A K , λ = k,

λ∣ 〉 ≡ ∣ 〉n n k; ; , λ∣ 〉 ≡ ∣ 〉z z k; ; , with energy eigenvalues

ω ω ω= ℏ + = ℏ + ℏ − ωE n E n k rn J J
m

, 0, 4 0
22

and the char-

acteristic hypergeometric function ∣ ∣ =F k z(; 2 ; )10
2

Γ ∣ ∣
∣ ∣
−

−k(2 ) ,
I z

z

(2 )k

k

2 1

2 1
where ∣ ∣−I z(2 )k2 1 is the modified Bessel

function of the first kind [20, 33].

• The annihilation and creation operators (2.1) and (2.2)
are

∑

∑

= + + ∣ 〉〈 + ∣

= + + ∣ + 〉〈 ∣

−
=

∞

+
=

∞

K n k n n k n k

K n k n n k n k

( 1)(2 ) ; 1; ,

( 1)(2 ) 1; ; (5.19)

n

n

0

0

• The expectation value of the normally ordered product in
the state ∣ >n k; ; see (2.8)

〈 〉 = + −+ −n k K K n k n k n; ; (2 1) (5.20)

• The expectation value of a function of normal operator
product + −F K K( ) (2.13)

〈 〉 = + −+ −( )n k F K K n k F n k n; # # ; [ (2 1)] (5.21)

• The projector of vacuum state (2.11)

Γ

∣ 〉〈 ∣ =
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( )
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k k

F k K K

k

K K

I K K
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; 2 ;
#

1

(2 )
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2
# (5.22)

k

k

10

2 1

2 1

• The definition of the BG-CSs (3.1) for the PHO [29, 32]

〉 = 〉−K z k z z k; ; (5.23)

• The expansion of the BG-CSs in the Fock-vectors basis
(3.7) [29]
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n
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• The BG-CSs written in the operatorial manner (3.11)
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• The projector onto a BG-CS (3.13)
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• The overlap (scalar product) of two BG-CSs (3.14) [32]
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• The integration measure (3.23) becomes

⎛
⎝⎜

⎞
⎠⎟

μ ϕ
π Γ

ϕ
π

=

×

= − −

( ) ( )

( )

z d z
k

F k z

G z
k

z I z K z

d ( )
d

2

1

(2 )
; 2 ;

/; /
0, 2 ; /

2
d

2
d (2 ) (2 ) (5.28)k k

0,1
2

10
2

0,2
2,0 2

2
2 1 2 1

• The expectation value of an operator A in the BG-CSs
representation (3.25)

∑
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λ λ
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• Using the equality Γ∣ ∣ = ∣ ∣
∣ ∣
−

−F k z k(; 2 ; ) (2 )
I z

z10
2 (2 )k

k

2 1

2 1

and also the differential properties of the hypergeometric
functions (A.3), the Mandel parameter (3.28) can finally
be expressed as follows [7, 32]

⎡
⎣⎢

⎤
⎦⎥= ∣ ∣ −λ

+

−
Q z

I z

I z

I z

I z

(2 )

(2 )
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(2 )
. (5.30)z

k

k

k

k
;

2 1

2

2
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• The expectation value of the normal ordered product
+ −K K (3.32) is (see also [34])

〈 ∣ ∣ 〉 =+ −z k K K z k z; ; (5.31)2

and, consequently, for a function of normal ordered
operators + −K K (3.32)

〈 ∣ ∣ 〉 =+ − ( )( )z k F K K z k F z; # # ; (5.32)2
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• The normalized density operator in a normal ordered
form (4.3) reads

⎜ ⎟⎛
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=
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( )n

F k
n

n
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F k K K

n n

n

I
n

n
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1

¯ 1
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; 2 ;
¯

¯ 1
; 2 ;

#

1

¯ 1

1

¯

¯ 1

#

2
¯

¯ 1

2
# (5.33)

k

k

k
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2 1
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• The Q-distribution function in the representation of BG-
CSs (4.9) is [32]
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2
¯
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(5.34)

k

k

k

0,1
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2

10
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2 1
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• The quasi-distribution function ∣ ∣P z( )p q,
2 (4.21) is

[28, 32]
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p q
q

k k

k

0,1
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0,2
2,0 2

, 1
1,0 2

2 1 2 1

2 1

• The thermal expectation value of = + −A K K (4.26) is
obtained using equation (A.7)

⎜ ⎟⎛
⎝

⎞
⎠

〈 〉 =
+ +

× +
+

=

+ −K K
n

n

n
k F

k k
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2, 2 1; 2 ;
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⎜ ⎟
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+
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× − −
+

= +

( )
( )

( )

n

n
k n

k

n

n
n n k

¯

¯ 1
2 ¯ 1

1 1
1 ¯

¯ 1
2 ¯ ¯ (5.36)

2

3

The same result can be obtained if we use the thermal
expectation formula in the Fock-vectors basis (4.29).

6. Concluding remarks

In the last few decades, the CSs approach has been con-
siderably generalized and has become a powerful tool in many
applications since mathematical physics, the quantum infor-
mation theory and quantum communication. In this paper we
have extended the boson normal ordering technique (which is

elaborated in the frame of the IWOP technique) to the GH-BG-
CSs. We achieved this goal by introducing a new computa-
tional approach that we have called the DOOT. In essence, this
technique is applicable only to functions that depend on normal
ordered products of generalized creation +A and annihilation

−A operators, i.e. to functions which depend on the operatorial
function ‘argument’ + −A A . In this manner we rediscovered,
but in a different way, a series of remarkable results obtained
by other methods that allow us to performmany calculations of
CSs formalism with direct applications in quantum optics.

For this idea we thought that it would be useful to
broaden the applicability area of the normally ordered tech-
nique on other operators, respectively other CSs, by using the
DOOT. We have chosen a large class of holomorphic CSs,
namely the GH-CSs, defined in the BG manner, previously
deduced by Appl and Schiller [7]. Due to their generality, if
their parameters are particularized, these states lead to a series
of known CSs, defined on the whole complex ‐z plane, on the
open disk with ∣ ∣ <z 1 or on the unit circle (∣ ∣ =z 1).

For the GH-BG-CSs, by the DOOT we have deduced the
expression of the projector of the vacuum state, as well as the
projector on a GH-CS, λ λ∣ 〉〈 ∣z z; ; , which, together with the
generalized integration measure, allow the resolution of the
unity operator. By means of the deduced formula for the
expectation values, we are able to express the Mandel para-
meter, which characterizes the behavior of the GH-CSs. As
the example of mixed states, we have chosen the thermal
states with the corresponding canonical density operator.
Their expression, deduced with the DOOT, allows us to
obtain the expression of the Q-distribution function, as well as
the P-quasi distribution function, which appears in the diag-
onal expansion of the density operator in the GH-BG-CSs
basis. Finally, we have calculated the thermal expectation
values for some operators which characterize the quantum
system under consideration.

In order to illustrate the correctness of the obtained
results and formulae, we have applied them to two known
CSs for two oscillators, namely the HO-1D and, respectively,
the PHO. The obtained results using the DOOT are the same
as those known in literature, but they were obtained by
alternative calculation methods. This proves the usefulness of
the extension of the DOOT to the GH-BG-CSs.

This paper proposes a new, much simpler approach that
refers to calculations with operators involved in the CSs
formalism instead of ordinary algebraic calculations. The
practical usefulness of the DOOT lies in its generality: it is
applicable not only to generation a+ and annihilation a
operators corresponding to HO-1D but to more general kinds
of generation +A and annihilation −A operators, which gen-
erate GH-BG-CSs. Calculations with the DOOT allow us to
find expressions of different features of GH-BG-CSs (e.g.
integration measure, density operator, Q and P functions,
expectation values, and so on). Then, by simply customizing
the indices p and q of the hypergeometric function

∣ ∣( ){ }F a b z{ } ; ;qp i
p

j
q

1
1

2 one can get these features that

correspond to different types of CSs. We consider that our
paper can contribute to the enrichment of the theory and to
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applications of the operator ordered techniques. Implicitly,
our approach, which we have called the DOOT, emphasizes
the validity and usefulness of the IWOP technique that was
perfected and promoted in several previous works by H-Y
Fan [9–15].

Finally, we want to make the remark that the GH-BG-
CSs can be regarded as non-linear coherent states of the HO-
1D if we consider an operator of the following manner

≡−A f N a( ) ,p q, where N is the particle number operator
λ λ∣ 〉 = ∣ 〉N n n n; ; . Then, GH-BG-CSs can be defined as

non-linear CSs of the HO-1D λ λ∣ 〉 = ∣ 〉f N a z z z( ) ; ;p q,

[23, 35].
In this way, the impressive gallery of non-linear CSs of the

HO-1D may be completed (see, e.g. [5] and the references
therein).

Appendix A

In what follows, we insert some useful properties of the
generalized hypergeometric functions and the Meijer’s G-
functions [20, 21, 28].

The definition of the generalized hypergeometric func-
tion
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Their repeatable derivative with respect to the argument
is [28]
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The connection between the generalized hypergeometric
function and the Meijer’s G-function (using the short notation)
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The classical integral from one Meijer's G-function
[20, 21]
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The classical integral from two Meijer’s G-functions
[20, 21]
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The index interchange relation for the Meijer’s G-func-
tions [20, 21]
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A useful property of the Meijer's G-functions [20, 21]
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A particular value of the Gaussian or ordinary hyper-
geometric function [20, 21]
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Appendix B

As is well-known, if −F 1 is the inverse operator of the
operator F, we have = =− −F F F F 1 .1 1 Let us consider an
arbitrary creation operator C and an arbitrary annihilation
operator A, not necessarily Hermitian conjugate, ≠+C A,
which act in the infinite dimensional Hilbert space of the Fock
vectors λ∣ >n; as follows

λ λ
λ λ

λ λ

∣ 〉 = ∣ + 〉
∣ 〉 = ∣ − 〉

∣ 〉 = ∣ 〉

+C n c n

A n a n

CA n a c n

; 1; ,

; 1; ,

; ; . (B.1)

n

n

n n

1

In the present paper we are interested in a particular case
of operator valued function F, which depends on the normally
ordered product of operators CA by applying the # #
operation

∑α= =
=

∞

F F CA CA# # # ( )# # ( ) # (B.2)
l

l
l

0

Let us suppose that their inverse operator is
=− −F F(# #) # #.1 1 By multiplying this relation with F# # and

using rule (II), we have, successively

= = =− − −F F F F F F# # (# #) # # # # # # 1. (B.3)1 1 1

After a series expansion in CA, and according to
equations (B.1) and (B.2), we have
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By applying the inverse operator −F CA[# ( ) #] 1 and
considering (B.3), we obtain
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from which it follows that
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Consequently, the inverse operator of F CA# ( )# is

=−F CA
F CA

[# ( ) #]
1

# ( )#
(B.7)1

In the previous sections we were interested in the case in
which the two operators were = +C A and = −A A so that the
inverse of the operator valued function + −( )F A A# # is

⎡⎣ ⎤⎦ =+ −
−

+ −
( ) ( )

F A A
F A A

# #
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# #
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